
Spring 2024 – University of Virginia 1© Praphamontripong

Syntax-based Testing

CS 3250
Software Testing

[Ammann and Offutt, “Introduction to Software Testing,” Ch. 9.1]



Spring 2024 – University of Virginia 2© Praphamontripong

Structures for Criteria-Based Testing

Four structures for modeling software

Input 
space

Graph

Source

Design

Specs

Use cases

A
pp

lie
d 

to

Logic

Source

Specs

FSMs

DNF

A
pp

lie
d 

to

Syntax

Source

Models

Integration

Inputs

A
pp

lie
d 

to

R--R RI-R RIPR---R



Spring 2024 – University of Virginia 3© Praphamontripong

ISP Graph

Logic Syntax

A1  B1
C2
C3
C4

A1                 C1
B2
B3
B4

B1  C1
A2
A3
A4

A1, B1, C1 Apply Base Choice Coverage (BCC)

# Return index of the first occurrence of a letter in string,
# Otherwise, return -1

def get_index_of(string, letter): Software artifact

Input Domain Models (IDMs)

# Return index of the first occurrence of a letter in string,
# Otherwise, return -1   (note: faulty version)

def get_index_of(string, letter):
index = -1
for i in range(1, len(string)):

if string[i] == letter:
return i

return index

Software artifact

1

i += 1

3

4 6

7

string[i] != letter

return i

5

string[i] == letter

i < len(string) i >= len(string)

return index

index = -1
i = 1

2

Graph model

Test requirements
{ [1,2,3], [1,2,7], 

[2,3,4], [2,3,6], 
[3,4,5], [4,5,2],
[5,2,3], [5,2,7] }

Apply 
Edge-Pair 
Coverage

# Return index of the first occurrence of a letter in string,
# Otherwise, return -1   (note: faulty version)

def get_index_of(string, letter):
index = -1
for i in range(1, len(string)):

if string[i] == letter:
return i

return index

Software artifact

Test requirement:  { (1,2) }

Apply Predicate Coverage

Let a be string[i] == letter
Therefore, p = a

Logic model

# Return index of the first occurrence of a letter in string,
# Otherwise, return -1   (note: faulty version)

def get_index_of(string, letter):
index = -1
for i in range(1, len(string)):

if string[i] == letter:
return i

return index

Software artifact

for_stmt : 'for' exprlist 'in' testlist ':' suite ['else' ':' suite]
exprlist : (expr|star_expr) (',' (expr|star_expr))* [',']
testlist : test (',' test)* [',']
suite : simple_stmt | …
…

Syntax (Grammar-based Testing)

Syntax (Program-based Mutation)
def get_index_of(string, letter):

index = -1
for i in range(1, len(string)):

if string[i] != letter:
return i

return index

ISP, Graph, Logic, and Syntax



Spring 2024 – University of Virginia 4© Praphamontripong

Syntax-Based Testing
� Rely on syntactic description of software artifacts

� Syntactic descriptions can come from many sources: 
� Programs
� Integration elements
� Design documents
� Input descriptions

� Tests are created with two general goals
� Cover the syntax in some way

� Generate artifacts that are valid (correct syntax)

� Violate the syntax
� Generate artifacts that are invalid (incorrect syntax)



Spring 2024 – University of Virginia 5© Praphamontripong

Grammar-Based Coverage Criteria
� Common practice: uses automata theory to describe 

software artifacts

� BNF – describe programming languages
� Finite state machines – describe program behavior
� Grammars and regular expressions – describe allowable 

inputs

� Focus: 

� Testing the program with valid inputs
� Exercise productions of the grammar according to some 

criterion

� Testing the program with invalid inputs
� Use grammar-based mutation to test the program with invalid 

input



Spring 2024 – University of Virginia 6© Praphamontripong

Grammar: Regular Expression
(G s n | B t n)*

Closure operator
zero or more occurrences

Choice
Either one can be used

Sequence
Any sequence of “G s n” and “B t n”

“G” and “B” may be commands, methods, or events
“s”, “t”, and “n” may be arguments, parameters, or values
“s”, “t”, “and “n” may be literals or a set of values



Spring 2024 – University of Virginia 7© Praphamontripong

Test Cases from Grammar
� A test case can be a sequence of strings that satisfies the 

regular expression 

� Example

(G s n | B t n)*

G  25  08.01.90
B  21  06.27.94
G  21  11.21.94
B  12  01.09.03

Recognizer (“parsing”)
• Is a string (or test input) in 

the grammar?

• Useful for input validation

Generator
• Given a grammar, derive 

strings in the grammar

Suppose G and B are commands 
“G” and “B” and s, t, and n are 
numbers



Spring 2024 – University of Virginia 8© Praphamontripong

Backus-Naur-Form (BNF) 
Grammars

� Although regular expressions are sometimes sufficient, a 
more expressive grammar is often used

Stream ::=  action*
action  ::=  actG |  actB
actG ::=  “G” s  n
actB ::=  “B” t  n
s           ::=  digit1-3

t           ::=  digit1-3

n         ::=  digit2 “.” digit2 “.” digit2

digit     ::= “0” | “1” | “2” | “3” | “4” | “5” | “6” | “7” | “8” | “9”

Non-terminal symbols

Start symbol

Production rules
Possible rewriting of a 

given nonterminal

Terminal symbol
Everything in the quotes



Spring 2024 – University of Virginia 9© Praphamontripong

More Example: BNF Grammar
� Simple grammar for a toy language of arithmetic 

expressions in BNF notation

expr ::=  id | num | expr op expr
id ::=  letter | letter id
num ::=  digit | digit num
op      ::=  “+” | “-” | “*” | “/”
letter ::=  “a” | “b” | “c” | … | “z”
digit     ::=  “0” | “1” | “2” | “3” | … | “9”



Spring 2024 – University of Virginia 10© Praphamontripong

Example: Derivations

a
expr => id => letter => “a”

49
expr => num => digit num => “4” num

=> “4” digit => “4” “9”
ab+12

expr => expr or expr => expr “+” expr
=> … => “a” “b” “+” “1” “2”

expr ::=  id | num | expr op expr
id ::=  letter | letter id
num ::=  digit | digit num
op      ::=  “+” | “-” | “*” | “/”
letter ::=  “a” | “b” | “c” | … | “z”
digit     ::=  “0” | “1” | “2” | “3” | … | “9”

Example grammar & derivations

sample derivations

a  !
   expr => id => letter => “a”!
43!
   expr => num => digit num => “4” num !
        => “4” digit => “4” “3”!
ab+12  !
   expr => expr op expr => expr “+” expr !
         => ... => “a””b” “+” “1” “2”

  expr   ::= id | num | expr op expr!
  id     ::= letter | letter id !
  num    ::= digit  | digit num!
  op     ::= “+”|”-”|”*”|”/”!
  letter ::= “a”|...|“z”!
  digit  ::= “0”|”1”|”2”|...|”9” 

4

expr

exprexpr op

“+”id num

letter id 

“a”

“b”

letter “1”

“2”

digit num 

digit

syntax tree for 
ab+12  

Which derivation should 
be used à leads to how 

criteria are defined



Spring 2024 – University of Virginia 11© Praphamontripong

Grammar Coverage Criteria
� Terminal Symbol Coverage (TSC)

� TR contains each terminal in the grammar
� One test case per terminal

� Production Coverage (PDC)

� TR contains each production rule in the grammar
� One test case per production (hence PDC subsumes TSC)

� Derivation Coverage (DC)
� TR contains every possible derivation of the grammar
� One test case per derivation 
� Not practical – TR usually infinite 
� When applicable, DC subsumes PDC

Node Coverage

Edge Coverage

Complete Path Coverage



Spring 2024 – University of Virginia 12© Praphamontripong

Example: TSC

Terminal Symbol Coverage (TSC)
• TR contains each terminal in the 

grammar
• One test case per terminal

expr ::=  id | num | expr op expr
id ::=  letter | letter id
num ::=  digit | digit num
op      ::=  “+” | “-” | “*” | “/”
letter ::=  “a” | “b” | “c” | … | “z”
digit     ::=  “0” | “1” | “2” | “3” | … | “9”

Imagine you are testing a parser or interpreter for the example 
toy language. Define a test set (i.e., a set of grammar derivations) 
that satisfies TSC

Tests for TSC
Number of tests is 
bounded by the number 
of terminal symbols

Need 40 tests
• 26 tests: a, b, …, z 
• 10 tests: 0, 1, ..., 9
• 4 tests: +, -, *, /



Spring 2024 – University of Virginia 13© Praphamontripong

Example: PDC

Production Coverage (PDC)
• TR contains each production rule in 

the grammar
• One test case per production (hence 

PDC subsumes TSC)

expr ::=  id | num | expr op expr
id ::=  letter | letter id
num ::=  digit | digit num
op      ::=  “+” | “-” | “*” | “/”
letter ::=  “a” | “b” | “c” | … | “z”
digit     ::=  “0” | “1” | “2” | “3” | … | “9”

Imagine you are testing a parser or interpreter for the example 
toy language. Define a test set (i.e., a set of grammar derivations) 
that satisfies PDC

Tests for PDC
Need 47 tests:
• 40 tests that satisfy TSC

• 4 for op, 26 for letter, 
• 10 for digit

• Additional 7 tests
• expr ::=id
• expr ::= num
• expr ::= expr op expr
• id  ::= letter
• id ::= letter id
• num ::= digit
• num ::= digit num



Spring 2024 – University of Virginia 14© Praphamontripong

Example: DC

Derivation Coverage (DC)
• TR contains every possible derivation 

of the grammar
• One test case per derivation

expr ::=  id | num | expr op expr
id ::=  letter | letter id
num ::=  digit | digit num
op      ::=  “+” | “-” | “*” | “/”
letter ::=  “a” | “b” | “c” | … | “z”
digit     ::=  “0” | “1” | “2” | “3” | … | “9”

Imagine you are testing a parser or interpreter for the example 
toy language. Define a test set (i.e., a set of grammar derivations) 
that satisfies DC

Tests for DC
• The number of tests 

depends on details of 
the program

• For this example: 
• Infinite due to 

id ::= letter id 
num ::= digit num
expr ::= expr op expr



Spring 2024 – University of Virginia 15© Praphamontripong

Mutation Testing
� A process of changing the software artifact based on well 

defined rules

� Rules are defined on syntactic descriptions

� We perform mutation analysis when we want to make 
systematic changes, resulting in variations of a valid 
string

� We can mutate the syntax or objects developed from the 
syntax 

Mutation operators: Rules that specify syntactic 
variations of strings generated from a grammar

Grammars

Grammar Ground strings
(Strings in the grammar)

Mutants: Result of one application of 
a mutation operator



Spring 2024 – University of Virginia 16© Praphamontripong

Underlying Concept:
Mutation Testing

mutants

subject

Apply
mutation
operators

Run tests on
subject

Run tests on
mutants

Generate
tests Distinguishable

result?
no Record

killed
mutants

Yes
(mutants
are killed)



Spring 2024 – University of Virginia 17© Praphamontripong

Mutants and Ground Strings
� Mutation operators

� The key to mutation testing is the design of the mutation 
operators

� Well designed operators lead to powerful testing

� Sometimes mutant strings are based on ground strings

� Sometimes they are derived directly from the grammar
� Ground strings are used for valid tests
� Invalid tests do not need ground string



Spring 2024 – University of Virginia 18© Praphamontripong

Example: Valid and Invalid Mutants
Stream ::=  action*
action  ::=  actG |  actB
actG ::=  “G” s  n
actB ::=  “B” t  n
s           ::=  digit1-3

t           ::=  digit1-3

n         ::=  digit2 “.” digit2 “.” digit2

digit     ::= “0” | “1” | “2” | “3” | “4” | “5” | “6” | “7” | “8” | “9”

Valid Mutants
Ground Strings Mutants      
G  25  08.01.90        B 25  08.01.90
B  21  06.27.94        B  41 06.27.94

Invalid Mutants
2 25  08.01.90
B  21  06.27.9



Spring 2024 – University of Virginia 19© Praphamontripong

Grammar-based Mutation 
Coverage Criteria

� Coverage is defined in terms of killing mutants

� Mutation score = !"#$%& '())%* #"+,!+-
+.+,) !"#$%& !.!/%0"(1,)%!+ #"+,!+-

� Mutation Coverage (MC)
� TR contains exactly one requirement to kill each mutant

� Mutation Operator Coverage (MOC)
� For each mutation operator, TR contains exactly one 

requirement to create a mutant using that operator

� Mutation Production Coverage (MPC)
� For each mutation operator, TR contains several 

requirements to create a mutant that includes every product 
that can be mutated by that operator



Spring 2024 – University of Virginia 20© Praphamontripong

Example Mutation Operators
� Terminal and nonterminal deletion

� Remove a terminal or nonterminal symbol from a production

� Terminal and nonterminal duplication
� Duplicate a terminal or nonterminal symbol in a production

� Terminal replacement
� Replace a terminal with another terminal

� Nonterminal replacement
� Replace a terminal with another nonterminal



Spring 2024 – University of Virginia 21© Praphamontripong

Example

Stream ::=  action*
action  ::=  actG |  actB
actG ::=  “G” s  n
actB ::=  “B” t  n
s           ::=  digit1-3

t           ::=  digit1-3

n         ::=  digit2 “.” digit2 “.” digit2

digit     ::= “0” | “1” | “2” | “3” | “4” | “5” | “6” | “7” | “8” | “9”

Ground String
G  25  08.01.90 
B  21  06.27.94

Mutation Operators
1. Exchange actG and actB
2. Replace digits with other digits

Mutants using MOC
B 25  08.01.90
B  24 06.27.94

Mutants using MPC
B 25  08.01.90    G 21  06.27.94
G  15  08.01.90     B  22 06.27.94
G  35  08.01.90     B  23 06.27.94
G  45  08.01.90     B  24 06.27.94
…                         …



Spring 2024 – University of Virginia 22© Praphamontripong

Summary
• The number of test requirements for mutation depends

� The syntax of the artifact being mutated
� The mutation operators

• Mutation testing is very difficult (and time consuming) to 
apply by hand

• Mutation testing is very effective – considered the “gold 
standard” of testing

• Mutation testing is often used to evaluate other criteria


