
Spring 2024 – University of Virginia 1© Praphamontripong

Program-based
Mutation Testing

CS 3250
Software Testing

[Ammann and Offutt, “Introduction to Software Testing,” Ch. 9.2]

Spring 2024 – University of Virginia 2© Praphamontripong

Instantiating Grammar-Based
Testing

Grammar-Based Testing

Program-based Integration Model-Based Input-Based

• Compiler
testing

• Valid and
invalid strings

Grammar

• Program
mutation

• Valid strings

• Mutants are
not tests

• Must kill
mutants

String
mutation

• Input
validation
testing

• XML and
others

• Valid strings

Grammar

• Input validation

testing

• XML and others

• Invalid strings

• No ground
strings

• Mutants are
tests

String
mutation

• Test how
classes
interact

• Valid strings

• Mutants are
not tests

• Must kill
mutants

• Includes OO

String
mutation

• FSMs
• Model

checking
• Valid strings
• Traces are

tests

String
mutation

Spring 2024 – University of Virginia 3© Praphamontripong

Syntax-Based Testing
Input space

Program source code

Test case
inputs

Test
requirements

Ground string(s)
Valid mutants
Invalid mutants

Grammar
Mutation operators

Mutants (compilable & runnable)

Grammar / original program
Mutation operators

Spring 2024 – University of Virginia 4© Praphamontripong

Applying Syntax-Based Testing to
Programs

� Test requirements are derived from the syntax of software
artifacts

� Syntax-based criteria originated with programs and have
been used mostly with program source code

� BNF criteria are most commonly used to test compilers

� Use BNF criteria to generate programs to test all language
features that compilers must process

� Mutation testing criteria are most commonly used for unit
testing and integration testing

Spring 2024 – University of Virginia 5© Praphamontripong

Mutation Testing
� A process of changing the software artifact based on well

defined rules

� Rules are defined on syntactic descriptions

� We perform mutation analysis when we want to make
systematic changes, resulting in variations of a valid
string

� We can mutate the syntax or objects developed from the
syntax

Mutation operators: Rules that specify syntactic
variations of strings generated from a grammar

Grammars

Grammar Ground strings
(Strings in the grammar)

Mutants: Result of one application of
a mutation operator

revisit

Spring 2024 – University of Virginia 6© Praphamontripong

Mutation Testing (Source Code)
• Inject changes into programs

• Strongest testing criterion

• Effective criterion for designing and evaluating tests

• Applied to C, C++, Java, JavaScript, Java EE, PHP,
Angular, SQL, Android, spreadsheet, policy, …

Premise:
If the software has a fault, there usually are some mutants

that can only be killed by a test that also detects that fault.

Kill:
The test makes the output of the mutant different from the

output of the original program

Spring 2024 – University of Virginia 7© Praphamontripong

Mutation Testing

Original
Program

Effective
tests

Ineffective
tests

int lastZero (int[] x) {
for (int i = x.length-1; i >= 0; i--) {

if (x[i] == 0)
return i;

}
return -1;

}

i > 0

Find last index of zero

Test x = {0, 1, 2};
Very effective at exploring the
boundary case

Input: x = {1, 1, 2};
Output original: -1
Output mutant: -1

Input: x = {0, 1, 2};
Output original: 0
Output mutant: -1

Killed!

[Thanks to Professor Lin Deng, Towson University]

Ineffective

Spring 2024 – University of Virginia 8© Praphamontripong

Mutation Testing

mutants

Subject
programs

Apply
mutation
operators

Run tests on
subject program

Run tests on
mutants

Generate
tests

Distinguishable
result?

no Record
killed

mutants

yes

Must be
valid strings
(compilable) #test requirements = # mutants

Killing
mutant

A mutant is killed if there is a test
case for which the test results are
different from the original program

Killing mutants à expose faults

Mutants are not tests, but used to find tests

Spring 2024 – University of Virginia 9© Praphamontripong

Mutation Testing

mutants

Subject
programs

Apply
mutation
operators

Run tests on
subject program

Run tests on
mutants

Generate
tests

Distinguishable
result?

no Record
killed

mutants

yes

Must be
valid strings
(compilable) #test requirements = # mutants

Killing
mutant

A mutant is killed if there is a test
case for which the test results are
different from the original program

Killing mutants à expose faults

Mutants are not tests, but used to find tests

Mutation operators
• Rules that specify how to modify the code (mutate)
• Well designed operators result in powerful tests

Mutation operators do one of two tasks
• Mimic typical programmer mistakes
• Encourage common test heuristics

We use mutation testing to
• Help testers design high quality tests
• Evaluate the quality of existing tests

Mutation scores = #"#$%&$' ()**+,
&-&.+/#)0%*+&$ "#$%&$'

Spring 2024 – University of Virginia 10© Praphamontripong

Killing Mutants

� The quality of tests depends on mutation operators

� Different operators must be defined for different goals
(and possibly for different programming languages)

� Testers add tests until all mutants have been killed
� A mutant is killed if there is a test case for which the test

results are different from the original program

Given a mutant m Î M for a ground string program P and a
test t, t is said to kill m if and only if the output of t on P is

different from the output of t on m.

Killing mutants ≈ exposing faults

Spring 2024 – University of Virginia 11© Praphamontripong

Categories of Mutants
� Dead mutant

� A test case has killed it
� The fault that a dead mutant represents will be detected by the

same test that killed it

� Uncompilable mutant
� Syntactically illegal
� Should not be generated or should be immediately discarded

� Trivial mutant
� Almost every test can kill it

� (Functionally) equivalent mutant
� No test can kill it (same behavior or output as original, for all

inputs)
� Infeasible test requirements

Spring 2024 – University of Virginia 12© Praphamontripong

Original method

Mutant

Example: Program Mutation

A fault is introduced
by mutating the code

Spring 2024 – University of Virginia 13© Praphamontripong

Example: Program Mutation
� i=1 is a mutation of i=0

� The code obtained by
changing i=0 to i=1 is called
a mutant of numZero

� A test kills the mutant if the
mutant yields different
outputs from the original
code

� Consider t1 = {1, 0, 0}
� Original returns 2, mutant returns 2, the mutant is not killed

� Consider t2 = {0, 1, 0}
� Original returns 2, mutant returns 1, the mutant is killed

Spring 2024 – University of Virginia 14© Praphamontripong

Original
method

Example 2

mutant1

mutant3mutant2

Each mutated statement represents a separate program

Spring 2024 – University of Virginia 15© Praphamontripong

Example 2

mutant1

mutant3mutant2

Consider the following tests
� t1 = min(0, 0)
� t2 = min(0, 1)
� t3 = min(1, 0)

Which mutants will be killed by
which tests?

Spring 2024 – University of Virginia 16© Praphamontripong

Example 2

mutant1

mutant3mutant2

x y min m1 m2 m3
t1 0 0 0 0 0 0
t2 0 1 0 1 0 0
t3 1 0 0 1 0 0

� t1 kills none of the mutants
� t2 kills m1
� t3 kills m1

Equivalent
mutant

Spring 2024 – University of Virginia 17© Praphamontripong

Example 3

1

Original method

With embedded mutants

2
3
4

Replace one variable
with another

Replace operator

Immediate runtime
failure .. If reached

Immediate runtime
failure if y == 0, else

does nothing

Mutant 4: force the
tester to create
tests that cause

every variable and
expression to have
the value of zero

Spring 2024 – University of Virginia 18© Praphamontripong

Mutation Coverage

• The RIPR model

� Reachability: the test causes the faulty (mutated) statement to be
reached

� Infection: the test causes the faulty statement to result in an
incorrect state

� Propagation: the incorrect state propagates to incorrect output

� Revealability: the tester must observe part of the incorrect output

• The RIPR model leads to two variants of mutation coverage:
Strong mutation and Weak mutation

Mutation Coverage (MC): For each m Î M, TR contains
exactly one requirement, to kill m.

Spring 2024 – University of Virginia 19© Praphamontripong

1. Strong Mutation Coverage

• Require RIPR

Strong Mutation Coverage (SMC): For each m Î M, TR
contains exactly one requirement, to strongly kill m.

Output of running
a test set on the
original program

Output of running
a test set on a

mutant
≠

Spring 2024 – University of Virginia 20© Praphamontripong

2. Weak Mutation Coverage

• Require RI-R
� Check internal state immediately after execution of the mutated

statement

� If the state is incorrect, the mutant is killed

• A few mutants can be killed under weak mutation but not under
strong mutation (no propagation)
• Incorrect state does not always propagate to the output

• Test sets that weakly kill all mutants also strongly kill most
mutants

Weak Mutation Coverage (WMC): For each m Î M, TR
contains exactly one requirement, to weakly kill m.

Spring 2024 – University of Virginia 21© Praphamontripong

Example (Mutant 1)

1

2
3

4

Consider mutant 1

Reachability: true
Infection: x ≠ y
Propagation: (y < x) = false
Full test specification:

true Ù (x≠y) Ù ((y<x)=false)
≡ (x≠y) Ù (y≥x)
≡ (y>x)

Test case value:
(x = 3, y = 5) strongly kill, weakly kill mutant 1
(x = 5, y = 3) weakly kill, but not strongly kill

Spring 2024 – University of Virginia 22© Praphamontripong

However, the previous
statement was v = x
Substitute the infection
condition, we get

(y < x) != (y < x)

“Logical contradiction”

Example (Mutant 3)

1

2
3

4

Consider mutant 3

Reachability: true
Infection: (y < x) != (y < v)

No input can kill this mutant … “Equivalent mutant”

Spring 2024 – University of Virginia 23© Praphamontripong

Designing Mutation Operators
Mutation Operators do one of two tasks:
• Mimic typical programmer mistakes
• Encourage common test heuristics

What are some of the common mistakes you may have made when writing programs?

Spring 2024 – University of Virginia 24© Praphamontripong

Designing Mutation Operators (cont.)
Mutation Operators do one of two tasks:
• Mimic typical programmer mistakes
• Encourage common test heuristics

Researchers design many operators, then experimentally
� Select the most useful operators
� Remove the redundant operators

Effective Mutation Operators

• If tests that are created specifically to kill mutants created by a
collection of mutation operators O = {o1, o2, …} also kill
mutants created by all remaining mutation operators with very
high probability, then O defines an effective set of mutation
operators

Spring 2024 – University of Virginia 25© Praphamontripong

Example: two MuJava operators

15

Introduction to Software Testing (Ch 5)� © Ammann & Offutt �	

Mutation Operators for Java

Each occurrence of one of the arithmetic operators +,�,*,�, and % is
replaced by each of the other operators. In addition, each is replaced by the
special mutation operators leftOp, and rightOp.

2. AOR –– Arithmetic Operator Replacement:

Each arithmetic expression (and subexpression) is modified by the functions
abs(), negAbs(), and failOnZero().

1. ABS –– Absolute Value Insertion:�

Each occurrence of one of the relational operators (<, ≤, >, ≥, =, ≠) is replaced
by each of the other operators and by falseOp and trueOp.

3. ROR –– Relational Operator Replacement:

Introduction to Software Testing (Ch 5)� © Ammann & Offutt �	

Mutation Operators for Java

Each occurrence of one of the arithmetic operators +,�,*,�, and % is
replaced by each of the other operators. In addition, each is replaced by the
special mutation operators leftOp, and rightOp.

2. AOR –– Arithmetic Operator Replacement:

Each arithmetic expression (and subexpression) is modified by the functions
abs(), negAbs(), and failOnZero().

1. ABS –– Absolute Value Insertion:�

Each occurrence of one of the relational operators (<, ≤, >, ≥, =, ≠) is replaced
by each of the other operators and by falseOp and trueOp.

3. ROR –– Relational Operator Replacement:

[note: from slides by Amman & Offutt]

leftOp(x <aop> y) = x rightOp(x <aop> y) = y

trueOp(x <aop> y) = true falseOp(x <aop> y) = false

Example:

1
2
3
4

[http://cs.gmu.edu/~offutt/mujava/mutopsMethod.pdf]

Example:
Mutation Ops for Java Programs

Spring 2024 – University of Virginia 26© Praphamontripong

Example: two MuJava operators

15

Introduction to Software Testing (Ch 5)� © Ammann & Offutt �	

Mutation Operators for Java

Each occurrence of one of the arithmetic operators +,�,*,�, and % is
replaced by each of the other operators. In addition, each is replaced by the
special mutation operators leftOp, and rightOp.

2. AOR –– Arithmetic Operator Replacement:

Each arithmetic expression (and subexpression) is modified by the functions
abs(), negAbs(), and failOnZero().

1. ABS –– Absolute Value Insertion:�

Each occurrence of one of the relational operators (<, ≤, >, ≥, =, ≠) is replaced
by each of the other operators and by falseOp and trueOp.

3. ROR –– Relational Operator Replacement:

Introduction to Software Testing (Ch 5)� © Ammann & Offutt �	

Mutation Operators for Java

Each occurrence of one of the arithmetic operators +,�,*,�, and % is
replaced by each of the other operators. In addition, each is replaced by the
special mutation operators leftOp, and rightOp.

2. AOR –– Arithmetic Operator Replacement:

Each arithmetic expression (and subexpression) is modified by the functions
abs(), negAbs(), and failOnZero().

1. ABS –– Absolute Value Insertion:�

Each occurrence of one of the relational operators (<, ≤, >, ≥, =, ≠) is replaced
by each of the other operators and by falseOp and trueOp.

3. ROR –– Relational Operator Replacement:

[note: from slides by Amman & Offutt]

leftOp(x <aop> y) = x rightOp(x <aop> y) = y

trueOp(x <aop> y) = true falseOp(x <aop> y) = false

1
2
3
4
5

Example:

[http://cs.gmu.edu/~offutt/mujava/mutopsMethod.pdf]

Example:
Mutation Ops for Java Programs

Spring 2024 – University of Virginia 27© Praphamontripong

SDL – Statement Deletion
SDL deletes each executable statement by commenting them out. It
does not delete declarations.

General
statement
deletion

[http://cs.gmu.edu/~offutt/mujava/mutopsMethod.pdf]

Example:
Mutation Ops for Java Program

Spring 2024 – University of Virginia 28© Praphamontripong

FOB – FailOnBack <html>
…

<body>
<body onload=“manipulatehistory()”>

<script src=“failOnBack.js”></script>
…

</html>

failOnBack.js function manipulatehistory()
{

var currentpage = window.document.toString();
var currenturl = window.location.href;
var pageData = window.document.toString();

// add a dummy url right before the current url
history.replaceState(pageData, “dummyurl”, “failonback.html”);
history.pushState(currentpage,“currenturl”, currenturl);

}

// update the page content
window.addEventListener(‘popstate’, function(event) {

window.location.reload(); });

browser
history

URL_P

URL_2

URL_1

URL_C

URL_C

URL_F

URL_2

URL_1

URL_P

[https://cs.gmu.edu/~offutt/documents/theses/UpsornPraphamontripong-Dissertation.pdf]

Example:
Mutation Ops for Web Apps

Spring 2024 – University of Virginia 29© Praphamontripong

WSCR – Scope
replacement

<html>
…

<jsp:useBean id = id1 scope = “page” class = class1 />
<jsp:useBean id = id1 scope = “session” class = class1 />
…

</html>

WSIR – Session
initialization replacement

Public class logout extends HttpServlet
{

public void doGet(...)
{

session = request.getSession(true);
session = request.getSession(false);

...
} }

WSAD – Session
setAttribute deletion

Public class logout extends HttpServlet
{

public void doGet(...)
{

session.setAttribute(attr1 , value1);
// session.setAttribute(attr1 , value1);

...
} }

Example:
Mutation Ops for Web Apps

[https://cs.gmu.edu/~offutt/documents/theses/UpsornPraphamontripong-Dissertation.pdf]

Spring 2024 – University of Virginia 30© Praphamontripong

Example:
Mutation Ops for Android Apps
• OnClick Event Replacement (ECR)

� Replaces event handlers with other compatible handler

• OnTouch Event Replacement (ETR)
� Replaces OnTouch events, similar to ECR

mPrepUp.setOnClickListener (new OnClickListener() {
public void onClick (View v) {

incrementPrepTime (); }
});
mPrepDown.setOnClickListener (new OnClickListener() {

public void onClick (View v) {
decrementPrepTime (); }

});

public void onClick (View v) {
decrementPrepTime (); }

[https://cs.gmu.edu/~offutt/documents/theses/LinDeng-Dissertation.pdf]

Spring 2024 – University of Virginia 31© Praphamontripong

Mutation Testing in Practice

Do fewer
• Selective mutation operators
• Removing redundancy

Do smarter
� Weak mutation
� Distributed execution

Do faster
• Schemata

Automation
• Mutant generation

• Mutant execution

• Strongest test criterion but very difficult + expensive to apply

• Subsumes other criteria by including specific mutation operators

• First-order mutation due to Competent programmers and
coupling effect

+

Spring 2024 – University of Virginia 32© Praphamontripong

Summary
• Mutation is very effective – the “gold standard” of testing

• Used to evaluate other criteria

• Applied to various software artifacts, languages, frameworks
with different implementation and specific definition of mutation
operators

• Most expensive … # test requirements = # mutants

• Very difficult to apply by hand – need automation

• To improve the test process, use selective mutation operators

