
Spring 2024 – University of Virginia 1© Praphamontripong

Shifting Testing Left

CS 3250
Software Testing

[Ammann and Offutt, “Introduction to Software Testing,” Ch. 4]



Spring 2024 – University of Virginia 2© Praphamontripong

Software Crisis
• Programmers just programmed

� Result was ad hoc structure
� Code eventually became hard to maintain
� Managing complexity was challenging

• The tendency towards irreducible number of errors

• Most software development faced 
� Overdue schedule
� Exceeding initial budget
� Inadequate software quality
� High software maintenance cost



Spring 2024 – University of Virginia 3© Praphamontripong

Traditional Cost-of-Change Curve
Traditional software development methods 
� Focus: extensive modeling and upfront analysis
� Goal: reveal problems and changes as early as possible

D
el

ta

Time

C
o
st

More work must be revised
Root problem is harder to 
find

Original Revision

[AO, p.55]



Spring 2024 – University of Virginia 4© Praphamontripong

Traditional Assumptions
1. Modeling and analysis can identify potential problems 

and changes early in development 

2. Saving implied by the cost-of-change curve justify the 
cost of modeling and analysis over the life of the 
project

• These assumptions are true if the requirements are 
always complete and current

• In reality, customers keep changing their mind

• Changes reflect the requirements



Spring 2024 – University of Virginia 5© Praphamontripong

Increased Emphasis on Testing
If high-quality testing is not centrally and deeply 

embedded in your development process, 
your project is at high risk for failure

• Fail in the technical sense
� Lose control of what the code actually does

• Fail in the business sense
� Your competitors roll out better functionality faster

One obvious solution is Agile



Spring 2024 – University of Virginia 6© Praphamontripong

Agile Methods
• Both traditional assumptions are invalid for many current 

software projects
� Software engineers are not good at developing requirements
� We do not anticipate many changes
� Many of the changes we do anticipate are not needed

• Requirements (and other non-executable artifacts) tend to 
go out of date very quickly
� We rarely (or almost never) update them
� Many current software projects change continuously

• Agile methods start small – with some behaviors and 
specific tests – and then evolve over time

Iterative development to accommodating 
customers’ demands and expectations



Spring 2024 – University of Virginia 7© Praphamontripong

Supporting Evolutionary Design

[AO, Agile Test]

Evolving
Design

Unanticipated
Change

Anticipated
change

Anticipated
change that

doesn’t 
happen

affect

aff
ect



Spring 2024 – University of Virginia 8© Praphamontripong

Defect Discovery: 
Traditional vs. Agile



Spring 2024 – University of Virginia 9© Praphamontripong

Managing the Cost Curve
• Test harness as guardian

� (Near) Instant feedback on changes (or mistakes)
� An hour? Ten minutes? Less?

� Something is executable from the very beginning

• Role of continuous integration
� Effective communication mechanisms

• De-emphasize non executable artifacts
• If it doesn’t execute, it’s not checkable

• Avoid anticipating future needs
� YAGNI: You Ain’t Gonna Need It



Spring 2024 – University of Virginia 10© Praphamontripong

Test Harness as Guardian
• What is correctness? 

� Traditional: universal
� Agile: existential

• Limit view of correctness
� Traditional: define all correct behavior completely at the 

beginning

� Agile: define correctness of some behavior with specific tests
� If the software behaves correctly on the tests, it is correct

Even as the software (including the test cases) evolve, 
the correctness of the system at any single point in time 

is subject to immediate verification by running the test set. 



Spring 2024 – University of Virginia 11© Praphamontripong

Test Harness Verify Correctness
• Tests must be automated 

• Every test must include a test oracle (mechanism that 
can evaluate whether that test passes or fails)

• Tests (executable artifacts) replace the requirements
(non-executable artifacts)

• Tests must be high quality and must run quickly

• Tests must be run every time changes are made to the 
software

Test harness runs all automated tests efficiently and 
reports results to the developers



Spring 2024 – University of Virginia 12© Praphamontripong

Testing as Central Activity

[image from http://www.twilightsoftwares.com]

Agile methods work best when 
the current version of the 
software can be run against all 
tests at all time



Spring 2024 – University of Virginia 13© Praphamontripong

Testing as Central Activity: TDD

[More TDD and exercise .. Later]



Spring 2024 – University of Virginia 14© Praphamontripong

System Tests in Agile Methods
• Traditional testers often design system tests from 

requirements 

• What if there are no traditional requirement documents?

• What if the traditional requirement documents are 
outdated?

System 
tests

Requirements

Requirements
Requirements

?



Spring 2024 – University of Virginia 15© Praphamontripong

User Stories
• A few sentences that captures what a user will do with 

the software
� In the language of the end user
� Usually small in scale with few details
� Not archived

Withdraw money 
from checking 
account

Support technician 
sees customer’s history 
on demand

Agent sees a list of 
today’s interview 
applicants



Spring 2024 – University of Virginia 16© Praphamontripong

Acceptance Tests in Agile Methods

Acceptance 
Test

(Failing)

Change 
software & 
RefactorTests 

archived

User 
Story TDD Test 1

Acceptance 
Test

(Passing)

Change 
software & 
Refactor

Continue adding TDD 
tests until acceptance 
test passes

Refactoring avoids 
maintenance debt

TDD Test 2

[AO, p.60]



Spring 2024 – University of Virginia 17© Praphamontripong

Continuous Integration
• Architecture-based software development practice

� Flexible and possible to deliver high-quality software in extremely 
short timeframes

• Goal: never break the build 
• Test each piece of code thoroughly
• Ensure that untested or broken code does not get committed 
• Implement strict version control policies

• Team members integrate their work frequently, leading to 
multiple integrations per day

• Each integration is verified by an automated build and test to 
detect integration errors as quickly as possible

Build, test, integrate – frequently incrementally, continuously



Spring 2024 – University of Virginia 18© Praphamontripong

Continuous Integration (CI)
Developers submit the new code/changes to a central code repository

Release manager merges the code with the main branch and pushes 
out the new release

[image from http://agilelucero.com/extreme-programming/what-is-continuous-integration-ci/]



Spring 2024 – University of Virginia 19© Praphamontripong

CI system monitors the version control system for changes and then 
launches the build after getting the source code from the repo

Continuous Integration (CI)

[image from http://agilelucero.com/extreme-programming/what-is-continuous-integration-ci/]



Spring 2024 – University of Virginia 20© Praphamontripong

CI server runs unit tests and final tests to check validity and quality 
of the product, report status 

Continuous Integration (CI)

[image from http://agilelucero.com/extreme-programming/what-is-continuous-integration-ci/]



Spring 2024 – University of Virginia 21© Praphamontripong

If success, the same package is deployed for acceptance testing and 
is then deployed on the production server

Otherwise, developers fix the code

Continuous Integration (CI)

[image from http://agilelucero.com/extreme-programming/what-is-continuous-integration-ci/]



Spring 2024 – University of Virginia 22© Praphamontripong

Continuous Integration (CI)
A Continuous integration server rebuilds the system, returns, and 
re-verifies tests whenever any update is checked into the repo

Mistakes are caught earlier

Other developers are aware of 
changes early

A continuous integration server 
doesn’t just run tests, it decides if 
a modified system is still correct

The rebuild and re-verify must 
happen as soon as possible 

(tests need to execute quickly)

[image from http://agilelucero.com/extreme-programming/what-is-continuous-integration-ci/]



Spring 2024 – University of Virginia 23© Praphamontripong

CI: Things to Do
• Maintain a single source code

• Automate the build

• Keep the build fast and make it self-testing

• Every commit has to be built on the integration machine

• CI server completely informs the responsive teams of each 
successful build and alerts the team in case of any failure

• The team must ensure that the issue is fixed at the earliest 



Spring 2024 – University of Virginia 24© Praphamontripong

CI: Key Testing Areas
• Regression testing – ensure changes does not break the app

• Run in the background
• Provide regular feedback to minimize regression defects

• Performance testing – ensure baseline under normal conditions
• Study the app for response time, identify changes in speed, 

reaction time, and app consistency

• Load testing – measure if the app can sustain the increased load
• Measure response time when app is subjected to more than usual 

load
• The load tests must begin small 

• Scalability testing
• Gauge the throughput, network, CPU memory usage, to reduce 

business risk

• End-to-end final testing – test the product in different scenarios 



Spring 2024 – University of Virginia 25© Praphamontripong

CI: Useful Resources
• Git (https://github.com/)

• Jenkins (https://jenkins.io/)

• Travis CI (http://travis-ci.org/)



Spring 2024 – University of Virginia 26© Praphamontripong

Wrap-up
• More companies are putting testing first

• This can decrease cost and increase quality

• The definition of “correctness” becomes restricted but practical

• We embrace evolutionary design

• We use test harness as guardian 

• Agile tests – most focus on “happy paths” and often miss
� Confused-user paths
� Creative-user paths
� Malicious-user paths

• What’s next?
• Test-Driven Development (TDD)


