
Spring 2024 – University of Virginia 1© Praphamontripong

TDD: Test Doubles

CS 3250
Software Testing

[Lasse Koskela, “Test Driven,” Chapter 4]
[Tilo Linz, “Testing in Scrum,” Chapter 4]

[Frank Appel, “Testing with JUnit,” Chapter 3]

Spring 2024 – University of Virginia 2© Praphamontripong

Fixture

Simple Scenario: Test and SUT

SUT: subject under test (sometimes, system under test, or program under test, PUT)
DOC: Depend-on component

SUT
Setup

Execute

Verify

Teardown

Test

initialize, direct input

verify

direct input, execute

direct output

”Direct” inputs and
outputs between a test

case and the SUT

Assert the “direct” output against the expected output

Spring 2024 – University of Virginia 3© Praphamontripong

Component Dependencies

SUT: subject under test (sometimes, system under test, or program under test, PUT)
DOC: Depend-on component

Fixture DOC

SUT
Setup

Execute

Verify

Teardown

Test

initialize, direct input

verify

direct input, execute

direct output

indirect output

indirect input

”Direct” inputs and
outputs between a test

case and the SUT

”Indirect” inputs and
outputs between

the SUT and the DOC

Assert the “direct” output (possibly from “indirect” input) against
the expected output

Spring 2024 – University of Virginia 4© Praphamontripong

Overview of TDD Process
1. From user story to requirements to tests

2. Choosing the first test

3. Breadth-first, depth-first

4. Let’s not forget to refactor

5. Adding a bit of error handling

6. Loose ends on the test list

7. Repeat

Test first – make it run – make it better

Spring 2024 – University of Virginia 5© Praphamontripong

3. Breadth-First, Depth-First
• What to do with a “hard” red phase?

� Issue is “What to fake” vs. “What to build”

• “Faking” is an accepted part of TDD
� That is, “deferring a design decision”

Spring 2024 – University of Virginia 6© Praphamontripong

Breadth-First
• Implement the higher-level functionality first by faking
the required lower-level functionality

Template
functionality

Template
functionality

Template
functionality

Faked
parsing

Faked
rendering

Faked
rendering Parsing RenderingParsing

Spring 2024 – University of Virginia 7© Praphamontripong

Depth-First
• Implement the lower-level functionality first and only
compose the higher-level functionality once all the
ingredients are present

Template
functionality

Template
functionality

Template
functionality

Faked
rendering Rendering Parsing RenderingParsingParsing

Spring 2024 – University of Virginia 8© Praphamontripong

Test Double

Stunt double
• Take place of the actor in

dangerous scene
• Highly trained
• Meet scene’s requirements
• May not be able to act

Movie industry

Test double
• Replace the real depend-on

component (that may be
unavailable, unusable,
expensive, dangerous,
complicated, or take too
long to run, …)

• Look or behave like the
depend-on component

• Simpler than the depend-
on component

Software industry

Stand-in for something that
would be real in the program

Replace a component the SUT depends on with a “test-specific equivalent”

Spring 2024 – University of Virginia 9© Praphamontripong

Why Test Double

Performance?
Flexibility?

Isolation?
Controllability?

Repeatability?

[Ref: emoji by Ekarin Apirakthanakorn]

Spring 2024 – University of Virginia 10© Praphamontripong

Fixture DOC

Test
double

During the fixture setup, replace DOC,
not part(s) of SUT being verified

How Test Double Works

SUT
Setup

Execute

Verify

Teardown

Test

initialize, direct input

verify

direct input, execute

direct output

indirect
output

indirect
input

• We want to verify code independently from the rest of the system, but
the code it depends on is unavailable or unusable

• Need an object that looks (or behaves) like the real component, but is
simplified – provides the same APIs so that SUT thinks it is the real one

SUT: subject under test (sometimes, system under test, or program under test, PUT)
DOC: Depend-on component

Spring 2024 – University of Virginia 11© Praphamontripong

Types of Test Doubles

Test
double

Dummy

Stub

Spy

Mock

Fake

A double that blows up when used

A double with hard-coded return values

A double that be can interrogated to
verify for correctness

A spy that verifies itself

A behavioral mimic

Spring 2024 – University of Virginia 12© Praphamontripong

Example
• Imagine you are writing and testing a program that controls a

rocket launching

• Can’t interact with a real, live rocket

• Need a stand-in for that rocket

� Rely on the idea of a rocket, and allow the runtime to provide a
rocket to work with

• static void launchRocket(Rocket rocket, LaunchCode code) {
• // ...
• }

Rocket interface

Spring 2024 – University of Virginia 13© Praphamontripong

Example: Dummy

• For the situation when an expired or invalid code is given, use a dummy to
ensure the rocket is not fired

• (+) Simple

• (-) May not be intuitive; no traditional setup-act-assert test structure

• class DummyRocket implements Rocket {
• @Override
• void launch() {
• throw new RuntimeException();
• }
• }
• ...
• static void launchRocket(Rocket rocket, LaunchCode code) {
• try {
• rocket.launch()
• } catch (Exception e) { }
• }

• @Test
• void givenExpiredLaunchCode_RocketNotLaunched() {
• launchRocket(new DummyRocket(), expiredCode);
• }

Spring 2024 – University of Virginia 14© Praphamontripong

Fixture DOC

Spy

How Spy Works

SUT indirect outputs

SUT: subject under test (sometimes, system under test, or program under test, PUT)
DOC: Depend-on component

• Captures indirect outputs of the SUT and saves them for later used in
assertion – act as an “observation point”

indirect
outputs

Setup

Execute

Verify

Teardown

Test

initialize, direct input

verify

execute

create

Spring 2024 – University of Virginia 15© Praphamontripong

Example: Spy
• class SpyRocket implements Rocket {
• private boolean launchWasCalled = false;
• @Override
• void launch() {
• launchWasCalled = true;
• }
• boolean launchWasCalled() {
• return launchWasCalled;
• }

• ...
• static void launchRocket(Rocket rocket, LaunchCode code) {
• try {
• // if code is invalid or expired, do not lunch
• // else
• rocket.launch()
• } catch (Exception e) { }
• }
• }

Spring 2024 – University of Virginia 16© Praphamontripong

Example: Spy (2)

• Use a spy so that a test can interrogate

• (+) More readable; traditional setup-act-assert test structure

• (-) Tests are coupled to the implementation (must know about the
implementation, instead of just focusing on behavioral outputs)

• @Test
• void givenExpiredLaunchCode_RocketNotLaunched() {
• SpyRocket spy = new SpyRocket();
• launchRocket(spy, expiredCode);
• assertEquals(false, spy.launchWasCalled();
• }

Spring 2024 – University of Virginia 17© Praphamontripong

How Mock Works

SUT: subject under test (sometimes, system under test, or program under test, PUT)
DOC: Depend-on component

Fixture DOC
Mock

SUT
expectations

indirect outputs

Setup

Execute

Verify

Teardown

Test
create

final verification

initialize, direct input

execute

verify

verify

• Verify that it is being used correctly by the SUT

• Uses as an observation point to verify behavior while avoiding test code
duplication

“self verification”

Spring 2024 – University of Virginia 18© Praphamontripong

Example: Mock

• For multiple tests with duplicate assertions, the duplicated assertions may
be moved to a helper method in a mock class – “avoid test code duplication”

• @Test
• void givenUnencryptedLaunchCode_RocketNotLaunched() {
• MockRocket mockRocket = new MockRocket(); // setup
• launchRocket(mockRocket, unencryptedCode); // execute
• assertEquals(false, mockRocket.launchWasCalled(); // verify
• assertEquals(true, mockRocket.disableWasCalled();
• }

• @Test
• void givenExpiredLaunchCode_RocketNotLaunched() {
• MockRocket mockRocket = new MockRocket(); // setup
• launchRocket(mockRocket, expiredCode); // execute
• assertEquals(false, mockRocket.launchWasCalled(); // verify
• assertEquals(true, mockRocket.disableWasCalled();
• }

• void verifyCodeRedAbort() {
• assertEquals(false, mockRocket.launchWasCalled();
• assertEquals(true, mockRocket.disableWasCalled();
• }

Spring 2024 – University of Virginia 19© Praphamontripong

Example: Mock (2)
• class MockRocket implements Rocket {
• private boolean launchWasCalled = false;
• private boolean disabledWasCalled = false;
•
• @Override
• void launch() {
• launchWasCalled = true;
• }

• @Override
• void disable() {
• disableWasCalled = true;
• }

• boolean launchWasCalled() {
• return launchWasCalled;
• }

• boolean disabledWasCalled() {
• return disabledWasCalled;
• }

• void verifyCodeRedAbort() {
• assertEquals(false, launchWasCalled();
• assertEquals(true, disableWasCalled();
• }
• ...
• static void launchRocket(Rocket rocket, LaunchCode code) {
• try {
• rocket.launch()
• } catch (Exception e) { }
• }
• }

Spring 2024 – University of Virginia 20© Praphamontripong

Example: Mock (3)

• The tests can no longer interrogate the mock through its public interface.
They can only verify that a code red abort happened.

• @Test
• void givenUnencryptedLaunchCode_RocketNotLaunched() {
• MockRocket mockRocket = new MockRocket();
• launchRocket(mockRocket, unencryptedCode);
• assertEquals(false, mockRocket.launchWasCalled();
• assertEquals(true, mockRocket.disableWasCalled();
• }

• @Test
• void givenExpiredLaunchCode_RocketNotLaunched() {
• MockRocket mockRocket = new MockRocket();
• launchRocket(mockRocket, expiredCode);
• assertEquals(false, mockRocket.launchWasCalled();
• assertEquals(true, mockRocket.disableWasCalled();
• }

Spring 2024 – University of Virginia 21© Praphamontripong

Example: Mock (4)
• @Test
• void givenExpiredLaunchCode_RocketNotLaunched() {
• MockRocket mockRocket = new MockRocket();
• launchRocket(mockRocket, expiredCode);
• mockRocket.verifyCodeRedAbort();
• }

• @Test
• void givenUnencryptedLaunchCode_RocketNotLaunched() {
• MockRocket mockRocket = new MockRocket();
• launchRocket(mockRocket, unencryptedCode);
• mockRocket.verifyCodeRedAbort();
• }

Spring 2024 – University of Virginia 22© Praphamontripong

Example: Mock (5)

• Notice the duplicate set up, refactor the tests

• @Test
• void givenExpiredLaunchCode_RocketNotLaunched() {
• MockRocket mockRocket = new MockRocket();
• launchRocket(mockRocket, expiredCode);
• mockRocket.verifyCodeRedAbort();
• }

• @Test
• void givenUnencryptedLaunchCode_RocketNotLaunched() {
• MockRocket mockRocket = new MockRocket();
• launchRocket(mockRocket, unencryptedCode);
• mockRocket.verifyCodeRedAbort();
• }

Spring 2024 – University of Virginia 23© Praphamontripong

Example: Mock (6)

• Refactor a spy to a mock
• Refactor the code to clean up and remove code smells (extract and move)
• (+) Decrease duplication, centralize the assertions, increase maintainability
• (-) To understand the tests, must inspect the mock

• @Test
• void givenExpiredLaunchCode_RocketNotLaunched() {
• launchRocket(mockRocket, expiredCode);
• mockRocket.verifyCodeRedAbort();
• }

• @Test
• void givenUnencryptedLaunchCode_RocketNotLaunched() {
• launchRocket(mockRocket, unencryptedCode);
• mockRocket.verifyCodeRedAbort();
• }

• ...
• MockRocket mockRocket;
• ...
• @BeforeEach
• void setup () {
• mockRocket = new MockRocket();
• }

Spring 2024 – University of Virginia 24© Praphamontripong

Be Careful When Using Replacements
• We are testing the SUT and test double in a different configuration

from that which will be used in production

• If a stand-in component does not mimic the DOC behavior
correctly, it can falsify the test results.

• We must emphasize on meeting the common specification.

We don’t want to build perfect cars for
crash-test dummies, but fail on real humans

• The replacements often simulate only partial behavior.

• There may be many ways to implement a certain functionality.

• Using third-party libraries or framework interfaces may introduce
different behavior and increase complexity in implementation.

• The different implementation may make it difficult to refactor the
code without breaking our tests.

Just enough to
pass a test

Spring 2024 – University of Virginia 25© Praphamontripong

Summary
• Test doubles serve various purposes including:

� Indirect input provisioning
� Recording of indirect output
� Immediate verification of interactions

• Fake it till you make it
� Fast or independent from environmental influences

• Verify behavior with mocks

• Increase efficiency with mock frameworks
� EasyMock (http://easymock.org/) – used in Koskela book
� Jmock (http://www.jmock.org/)
� Mockito (http://site.mockito.org/) – popular

